Short communication

© Springer-Verlag 1987

Treatment of acute myeloid leukemia and blastic phase of chronic myeloid leukemia with combined eflornithine (alpha difluoromethylornithine) and methylglyoxal-bis-guanyl hydrazone (methyl-GAG)

Jean-Albert Gastaut¹, Guy Tell², Paul J. Schechter², Dominique Maraninchi¹, Brynhild Mascret¹, and Yves Carcassonne¹

Summary. A combined effornithine-MGBG treatment was studied in patients with acute myeloid leukemia (AML) or blastic transformation of chronic myeloid leukemia (BT CML). The first ten patients (5 AML, 5 BT CML) received i.v. or p.o. eflornithine 6 g m⁻² day-1 and i.v. MGBG 500 mg/m² once a week. The duration of treatment was 5-37 days (median 15) with one to five MGBG infusions (median 2). The results were complete response (CR) in one patient, partial response (PR) in four, minimal response (MR) in one and failure (F) in four. Pronounced side effects, including severe mucositis, gastrointestinal disturbances and skin infiltration, were observed in eight patients. As the four PRs were achieved in patients with BT CML, it was decided also to study ten patients with this indication. In attempts to decrease the incidence and severity of unwanted effects, lower doses of effornithine-MGBG were used, i.e., effornithine 4 g m⁻² day-1 and MGBG 200 mg m⁻² once a week. The duration of treatment was 9-110 days (median 46), with 2-14 MGBG infusions (median 6). Responses observed were CR in two patients (in one of whom it was only transient), transient PR in two, transient MR in four, and F in two. Treatment at lower doses was better tolerated, thus allowing a longer duration of treatment. Five of ten patients had moderate or severe gastrointestinal disturbances and one patient had a severe subjective hearing loss. The effornithine-MGBG combination may prove to be a useful alternative treatment for AML and BT CML, but comparative trials will ultimately be necessary for a more definitive assessment of the combination.

Introduction

Methylglyoxal-bis[guanyl-hydrazone] (MGBG, mitoguazone, methyl-GAG) is a cytotoxic compound whose activity in the treatment of acute leukemia was first demonstrated more than 20 years ago [3, 4, 6, 15, 16, 18]. However, because of significant toxicity, MGBG was largely abandoned. The renewed interest for this drug is mainly due to the description of less toxic dosage schedules whether MGBG is administered alone or in combination with other anticancer agents [24]. Although the precise antitumor

mechanism of MGBG is not known, it seems it may be related to an inhibition of polyamine biosynthesis [10].

Eflornithine (alpha difluoromethylornithine, DFMO) is an irreversible inhibitor of ornithine decarboxylase (ODC), a key enzyme in the biosynthesis of polyamines, so that its administration leads to a depletion of intracellular polyamines [17]. It has been reported that such an effect will enhance the cellular uptake of exogenous polyamines and of their structural analogues such as MGBG, a phenomenon that can therefore be used to augment the antiproliferative activity of MGBG [1, 19, 21].

This observation provided the rationale for the study of an effornithine-MGBG combination in humans. In the first clinical trial an impressive clinical response was observed, with mild toxicity or none at all [20]. We therefore decided to study this combination in adult patients with acute myeloid leukemia (AML) or with blastic transformation of chronic myeloid leukemia (BT CML). We studied two groups of ten patients.

Patients and methods

Patients with AML resistant to previous conventional therapies and patients with cytogenetically confirmed BT CML, whether previously treated or not, were eligible for the study. All selected patients were adult and had given informed consent to inclusion in the study.

Pretreatment evaluations included: history of clinical symptoms, physical examination, hemogram, bone marrow examination (by aspiration and biopsy) for morphologic and cytogenetic studies, coagulation tests, liver and renal functions and chest X-rays. The clinical examination and the blood biochemical and hematological tests were repeated once weekly during the treatment and at the end.

The criteria of response to treatment were based upon changes observed in the counts of leukemic cells. In AML, a complete response (CR) corresponded to complete disappearance of leukemic cells in bone marrow or to a residual rate of <5%; a partial response (PR), to a decrease in leukemic cells by >50% in bone marrow and/or in blood; a minimal response (MR), to a decrease by <50% in bone marrow and/or in blood; and a failure (F) of treatment, to worsening or unchanged results. In BT CML, a CR was defined as a return to the chronic phase of the disease (i.e., disappearance of leukoblasts or decrease in myeloblasts + promyelocytes to <30% in bone marrow and/or in blood); PR, MR, and F were defined as for AML.

Department of Hematology (Prof. Y. Carcassonne), Institut Paoli-Calmettes, Marseilles, France

² Merrell Dow Research Institute, Strasbourg, France

Table 1. Patient characteristics, treatments and therapeutic responses in part one of study

Patient no. sex/age (years)	Diagnosis ⁴	Treatments				Results			
		Eflornithine		MGBG		Blast cells ^b at start → end of study		Response	
		Dose	No. of	Dose (mg/m ² i.v.)	No. of doses	at start → end	or study	(end of study)	
		(gm ⁻² day ⁻¹)	days			Blood $(\times 10^3/\text{mm}^3)$	Bone marrow (%)		
1. F/53	AML (M ₁)	6.0 i.v.	5	500	1	0 → 0	78 → blastic aplasia	F	
2. F/57	$AML(M_4)$	6.2 p.o.	13	517 620	1	0 → 0	36 → 0	CR	
3. F/52	AML(M ₅)	5.6 p.o.	13	500	2	$0.016 \rightarrow 0.6$	58 → blastic aplasia	F	
4. F/66	AML (aplastic form)	5.7 p.o.	10	506	1	$0 \rightarrow 0$	58 → 74	F	
5. F/55	AML (secondary)	5.8 p.o.	16	451 355	1	83 → 7.2	61 → 59	F	
6. M/25	BT ₁ CML	6.0 p.o.	31	500 600	1	$0 \rightarrow 0$	$HB: 43 \rightarrow 12$	PR	
7. F/66	BT ₁ CML	5.6 p.o. 5.6 i.v.	4 10	500	2	74 → 0.25	HB: 81 → n.a.	PR	
8. M /57	BT ₁ CML	5.9 p.o. 5.9 i.v.	32 5	500	5	72 → 0	HB: $+ \rightarrow \text{n.a.}$	PR	
9. M/48	BT ₂ CML	6.3 p.o. 4.2 i.v.	15 14	500	4	$13.4 \rightarrow \text{n.a.}$	$MB + PM: 45 \rightarrow 29$	MR	
10. F/25	BT ₁ CML	6.2 i.v. 2.9 i.v. 2.2 i.v.	3 3	222	3	19.4 → 3.0	HB: 90 → n.a.	PR	

^a AML recorded according to FAB classification (Br J Haematol 33: 451, 1976). However, patients 4 and 5 could not be classified because of atypical morphologic presentations. BT_nCML, blastic transformation of CML; n indicates the number of blastic episodes at entry on study

Results

Part one of study¹

The ten patients were seven women and three men, with a mean age of 50.4 years (range 22-66). Five had AML, and five were suffering from their first or second (Pt 9) episode of BT CML (Table 1). All were resistant to the conventional therapies previously given (mean number of cytotoxic drugs: 1.7; range: 1-3).

Eflornithine was administered p.o. or i.v. (Table 1) at the starting dose of 6 g/m² body surface area daily in three divided doses. MGBG was started 3-4 days later and given as a slow (3 h) i.v. infusion of 500 mg/m² once a week. Doses were subsequently adjusted according to individual tolerance and hematological responses (Table 1). The duration of the treatment varied from 5 to 37 days (median 15 days) and the number of MGBG infusions, from 1 to 5 (median two infusions).

All patients experienced bone marrow aplasia. One CR was observed (Pt 2). PR was observed in four patients (Pts 6, 7, 8 and 10), all of whom were being treated for BT CML. An MR was noted in one patient (Pt 9), and four patients (all with AML) failed to respond to treatment (Pts 1, 3, 4 and 5).

Pronounced side effects were observed in eight of the ten patients; the most frequent were mucositis (n = 7), gastrointestinal complaints (n = 7) and skin infiltration (n = 5).

As these results were suggestive of therapeutic activity in BT CML, it was decided to extend the study in ten patients with this indication. In an attempt to decrease the incidence and severity of unwanted side effects, lower doses of effornithine-MGBG were administered.

Part two of study

Ten patients (7 male, 3 female) aged 20–66 years (mean 41.7 years) were included (Table 2). Seven were in the first (Pts 2–6, 8 and 9), 2 in the second (Pts 7 and 10), and one in the third (Pt 1) episode of BT CML. With the exception of patient 6, in whom CML had not been recognized before the diagnosis of BT CML, all patients had been treated with chemotherapeutic agents (mean 4.7; range 2–11). Two patients (Pts 7 and 10) had previously recovered from ALL before developing CML. Other previous treatments included splenectomy (Pts 5, 9 and 10) and radiotherapy to the spleen (Pts 1, 7 and 10). Patient 1 had already received the effornithine-MGBG combination 6 months before, having been included in part one of this study during his second episode of BT CML.

Effornithine was administered p.o. or i.v. (Table 2) at the starting dose of 4 g/m^2 daily given in three divided

^h HB, hemoblasts; MB + PM, myeloblasts + promyelocytes; +, presence; n.a. not available

^c CR, complete response; PR, partial response; MR, minimal response; F, failure of treatment (see "Patients and methods" for the criteria of response)

¹ Results presented in part at the Second European Conference of Clinical Oncology [7]

Table 2. Patient characteristics, treatments and therapeutic responses in part two of study

Patient no. sex/age	Diagnosis ^a	Treatments				Results			
		Eflornithine		MGBG		Blast cells ^b			Response
		Dose (gm ⁻² day ⁻¹)	No. of days	Dose (mg/m ² i.v.)	No. of doses	Day of study	Blood $(\times 10^3/\text{mm}^3)$	Bone marrow (%)	
1. M/49	BT ₃ CML	4.3 p.o. 4.3 i.v.	2 26	162 216	3	0 19 26	0.12 7.8 7.8	HB: 50 38 67	– MR F
2. M/46	BT ₁ CML	4.2 i.v.	48	211 301	3 3	0 6 47	49.3 9.75 41	MB+PM: 23 n.a. 23	- PR F
3. F/66	$BT_{i}CML$	4.2 i.v.	12	209	2	0 12	23.7 61.6	MB+PM: 28 n.a.	– F
4. M/41	BT ₁ CML	4.1 i.v.	9	276	5	0	140	HB: not interpretable	-
						9	432	46	F
5. F/20	BT ₁ CML	4.1 p.o.	26	176 294	5 2	0 5 26	18.5 0.32 1.69	HB: 33 n.a. n.a.	– PR MR
6. M/45	BT ₁ CML	3.9 p.o.	79	202 123 202	4 2 1	0 36	32.8 1.08	HB: 20 17	– MR
				307	2	78	0.62	48	F
7. M/51	BT ₂ CML	4.0 p.o.	110	200 273 333 303 212	1 1 1 9 2	0 32 60 110	10.1 0.53 0.35	MB+PM: 36 29 18	PR CR
8. F/26	BT ₁ CML	3.9 p.o.	29 9	215 368	2	0	55.4	MB + PM: 42	_
		3.9 p.o.	44	307 92 307 215 307	1 1 1 1 1	25	2.7	9	CR
0.14/25	DT CMI	20	64	368	_	84	11.8	29	F
9. M/35	BT ₁ CML	3.8 p.o.	64	208 298 208	1 3 1	0 14	64.9 20.7	HB: 46 36	MR
				298	4	64	2.5	51	F
10. M/38	BT ₂ CML	3.2 p.o.	46	189 270 324	1 4 1	0 31 38 46	1.6 15.5 5.88 3.26	MB+PM: 32 28 28 n.a.	– MR F

^a BT_nCML, blastic transformation of CML; n indicates the number of blastic episodes at entry into study

doses. Usually 3-5 days (except Pt 6, 7 days) later, MGBG was started at a dose of 200 mg/m² once a week, given as a slow (3 h) i.v. infusion. Individual treatment schedules are summarized in Table 2. The duration of treatment varied from 9 to 110 days (median 46 days) and the number of MGBG infusions, from 2 to 14 (median 6 infusions).

The therapeutic results are shown in Table 2, which shows both the best response recorded during the treatment and the final response when the treatment was terminated. Two patients (Pts 3 and 4) did not respond to treatment. Four patients (Pts 2, 5, 7 and 8) responded favorably: two patients (Pts 2 and 5) achieved PR that was later

followed by failure (Pt 2) or MR (Pt 5); patients 7 and 8 returned to the chronic phase (according to cytological criteria), but patient 8 subsequently relapsed and did not respond to further effornithine-MGBG treatment. The other four patients (Pts 1, 6, 9 and 10) had minimal and transient responses.

The treatment was perfectly well tolerated in five of the ten patients (Pts 1, 3, 4, 5 and 7). In the other five patients the major side effects were related to mild to moderate (Pts 2, 8, 9, 10) or severe (Pt 6) gastrointestinal disturbances, and one patient (Pt 2) developed a severe subjective hearing loss.

b HB, hemoblasts; MB + PM, myeloblasts + promyelocytes; +, presence; n.a. not available

^c CR, complete response; PR, partial response; MR, minimal response; F, failure of treatment (see "Patients and methods" for the criteria of response)

Discussion

Despite the large number of antineoplastic agents used and the variety of therapeutic schedules tested, the treatment of relapsed AML remains a difficult problem [13]. The same is also true for the blastic crisis of chronic myeloid leukemia [27], which leads to early death in all patients. In attempts to control this blastic phase better, recent trials have used intensive polychemotherapy [2, 5, 22] and bone marrow transplantation [8].

The obvious need for more effective treatments has led investigators to look for specific potentiation of drug already known to have therapeutic activity in hematological diseases. MGBG as a single agent is known to have anti-leukemic properties [16], and combinations of MGBG with other drugs have shown activity in acute leukemia [3, 4, 9, 14, 18], in lymphoma [11, 12, 25] and in some solid tumors [24]. The observation that effornithine-induced depletion of intracellular polyamine concentrations could enhance the intracellular uptake of MGBG preferentially into tumor cells [19] stimulated interest in the chemotherapeutic potential of this particular combination.

The results observed with our first ten patients were promising, with one CR observed in five AML cases and four PRs in five BT CML patients. The combined treatment was poorly tolerated, however, as has been described in recent phase I trials [23, 26]. We therefore, decided to study ten cases of BT CML in addition, using lower doses of each drug in an attempt to improve tolerance. The lower doses were in fact, generally better tolerated. The best evidence of improved tolerance is probably the observation that the total duration of treatment, and therefore the number of MGBG infusions, was three times greater in the second part of the study. The therapeutic responses observed with these lower dosages were quite variable. Although eight of the ten patients showed some degree of improvement during the study, only one response was sustained.

The results of the present study, then, indicate that the eflornithine-MGBG combination may prove to be a useful alternative treatment for AML and BT CML. At the doses administered in the second part of the study, i.e., eflornithine 4 g/m² per day (i.v. or p.o.) and MG BG 200 mg/m² per week (i.v.), the treatment was reasonably well tolerated and yielded various degrees of the rapeutic responses in BT CML. However, because the present study was not designed as a comparative trial between two different dosages of the drug combination, no definitive conclusion can be drawn as to whether these represent the optimal doses of eflornithine-MGBG for use in all patients. Specifically designed comparative trials will ultimately be necessary for a more definitive assessment of the combination.

References

- Alhonen-Hongisto L, Seppänen P, Jänne J (1980) Intracellular putrescine and spermidine deprivation induces uptake of the natural polyamines and methylglyoxal bis (guanylhydrazone). Biochem J 192: 941-945
- Baccarini M, Corbelli G, Tura S and the Italian Cooperative Study Group on chronic myeloid leukemia (1981) Early splenectomy and polychemotherapy versus polychemotherapy alone in chronic myeloid leukemia. Leuk Res 5: 149-157
- Bernard J (1967) Acute leukemia treatment. Cancer Res 27: 2565-2569
- 4. Boiron M, Jacquillat C, Weil M, Bernard J (1965) Combina-

- tion of methylglyoxal bis (guanylhydrazone) (NSC-32946) and 6-mercaptopurine (NSC-755) in acute granulocytic leukemia. Cancer Chemother Rep 45: 69-73
- Cunningham I, Gee T, Dowling M, Chaganti R, Bailey R, Hopfan S, Bowden L, Turnbull A, Knapper W, Clarkson B (1979) Results of treatment of Phl + chronic myelogenous leukemia with an intensive treatment regimen (L-5 protocol). Blood 53: 375-395
- Freireich EJ, Frei E III, Karon M (1962) Methylglyoxal bis (guanylhydrazone): a new agent active against acute myelocytic leukemia. Cancer Chemother Rep 16: 183-186
- Gastaut JA, Mascret B, Maraninchi D, Tubiana-Mathieu N, Carcassonne Y (1983) Treatment of acute leukemia with combined alpha-difluoromethyl-ornithine (alpha DFMO) and methyl-GAG in adult patients. Second European Conference on Clinical Oncology, Amsterdam 2-5 November
- Goldman JM, Baughan A (1983) Application of bone marrow transplantation in chronic granulocytic leukemia. Clin Haematol 12: 739-753
- 9. Herman TS, Durie BG, Hutter JJ Jr (1982) Treatment of patients with refractory myelogenous leukemia with BCOMM (1,3-bis-chloro) (2-chloroethyl)-1-nitrosourea (BCNU), Oncovin (vincristine), cyclophosphamide, high-dose methotrexate and methylglyoxal-bis-guanylhydrazone (MGBG). Cancer Chemother Pharmacol 8: 73-75
- Jänne J, Alhonen-Hongisto L, Seppanen P, Simes M (1981)
 Use of polyamine antimetabolites in experimental tumors and in human leukemia. Med Biol 59: 448-457
- Knight WA III, Fabian C, Costanzi JJ, Jones JJ, Coltman CA Jr (1983) Methyl-glyoxal bis guanyl hydrazone (methyl-GAG, MGBG) in lymphoma and Hodgkin's disease. A phase II trial of the Southwest Oncology Group. Invest New Drugs 1: 235-237
- 12. Kuhn JG, Knight WA III, McDaniel TM, Coltman CA Jr, Whitecar JP, Fabian C, Costanzi JJ (1982) Methylglyoxal-bis (guanylhydrazone) (methyl-GAG) in the management of non-Hodgkin's lymphoma (NHL). Proc Am Soc Clin Oncol 1: 163
- Letendre L, Kiely JM, Hoagland HC (1984) Reinduction chemotherapy for acute non lymphocytic leukemia. Mayo Clin Proc 59: 618-621
- Levi JA, Wiernik PH (1975) Combination therapy with 5-azacytidine (NSC-102816) and methyl-GAG (NSC-32946) in previously treated adults with acute non-lymphocytic leukemia. Cancer Chemother Rep 59: 1043-1045
- Levin RH, Brittain GM, Freireich EJ (1963) Different patterns of remission in acute myelocytic leukemia: a comparison of the effects of methylglyoxal-bis-(guanylhydrazone) and 6-mercaptopurine. Blood 21: 689-698
- Levin RH, Henderson E, Karon M, Freireich EJ (1964) Treatment of acute leukemia with methylglyoxal-bis (guanylhydrazone) (methyl-GAG). Clin Pharmacol Ther 6: 31-42
- Metcalf R, Bey P, Danzin C (1978) Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C. 4.1.1.17) by substrate and product analogues. J Am Chem Soc 100: 2551-2553
- 18. Schwarzenberg L, Schneider M, Cattant A, Amiel JL, Schlumberger JR, Mathé G (1966) Le traitement des leucémies aiguës par la methylglyoxal-bis (guanyl-hydrazone) et son association avec la 2-hydroxystilbamidine. Sem Hop Paris 42: 2955-2957
- Seppänen P, Alhonen-Hongisto L, Jänne J (1981) Polyamine deprivation-induced enhanced uptake of methylglyoxal-bis-(guanylhydrazone) by tumor cells. Biochim Biophys Acta 674: 169-177
- Simes M, Seppänen P, Alhonen-Hongisto L, Jänne J (1982)
 Synergistic action of two polyamine antimetabolites leads to a rapid therapeutic response in childhood leukemia. Int J Cancer 28: 567-570
- Sjoerdsma A, Schechter PJ (1984) Chemotherapeutic implications of polyamine biosynthesis inhibition. Clin Pharmacol Ther 35: 287-300

- 22. Spiers AS (1979) Metamorphosis of chronic granulocytic leukemia: diagnosis, classification and management. Br J Haematol 41: 1-7
- 23. Splinter TAW, Romijn JC (1986) Phase I study of alpha-difluoromethylornithine and methyl-GAG. Eur J Cancer Clin Oncol 22: 61-67
- 24. Warrell RP Jr, Burchenal JH (1983) Methylglyoxal-bis (guanylhydrazone) (methyl-GAG): current status and future prospects. J Clin Oncol 1: 52-65
- 25. Warrell RP Jr, Straus DJ, Young CW (1982) Combination chemotherapy of patients with relapsed malignant lymphoma using methyl-GAG and teniposide (VM-26). Cancer Treat Rep 66: 1121-1125
- Warrell RP Jr, Coonley CJ, Burchenal JH (1983) Sequential inhibition of polyamine synthesis. A phase I trial of DFMO (alpha-difluoromethylornithine) and methyl-GAG (methylglyoxal-bis [guanylhydrazone]). Cancer Chemother Pharmacol 11: 134-136
- Wiernik PH (1984) The current status of therapy and prevention of blast crisis of chronic myelocytic leukemia. J Clin Oncol 2: 329-335

Received January 23, 1987/Accepted August 18, 1987